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Abstract

I propose a school choice policy to recommend guaranteed school alternatives for
students left unassigned under stable matching. By leveraging revealed preferences,
I design a personalized recommendation mechanism that offers voluntary allocations
to unlisted but potentially desirable nearby schools. Using rich administrative data
from the Chilean school choice system, I simulate the proposed intervention across the
full applicant pool to assess its general equilibrium effects on the resulting allocations.
Results indicate that in the main round, the mechanism is able to (i) reduce the propor-
tion of unmatched applicants by up to 50%, (ii) increase expected aggregate utility by
2-6%, and (iii) concentrate utility gains among applicants who apply to oversubscribed
programs. To facilitate implementation, I develop a targeted submarket implementa-
tion that yields comparable improvements while preserving all original assignments.
Overall, the policy offers a cost-effective and scalable solution to improve match out-
comes by redistributing excess demand within centralized assignment systems.
Keywords: school choice; market design; sure alternative
JEL Classification: C78; D47; I21; I28; D83

I Introduction

Over the past two decades, there have been significant transformations in school assign-
ment systems across the world. Many countries and cities have shifted away from decen-
tralized application processes towards centralized and coordinated systems, that empha-
size equity, transparency, and efficient allocation (Neilson, 2024). Effective reform requires
close attention to the assignment mechanism itself, its set of rules, priority structure, and
implementation strategies. Central to these reforms has been the transition from an Imme-
diate Acceptance (or Boston) mechanism, towards a strategy-proof alternative, particularly
the Deferred Acceptance (DA) algorithm (Gale & Shapley, 1962), which ensures that it is
a dominant strategy for applicants to truthfully rank their school preferences, reducing
strategic behavior, and improving transparency (Abdulkadiroğlu, Pathak, & Roth, 2005;
Abdulkadiroğlu, Pathak, Roth, & Sönmez, 2005). A growing body of theoretical and em-
pirical research highlights the benefits of such systems, including higher assignment rates,

*ilepe@fen.uchile.cl. This paper is part of my Master’s thesis for the MSc in Economics at Universidad de
Chile. I want to thank Dante Contreras, Juan Pablo Torres-Martı́nez and Christopher Neilson for their insight-
ful comments, methodological guidance, and continued support, which greatly improved the quality of this
research. I also thank Tamara Muñoz, Martı́n Sielfeld, and the ConsiliumBots research team for their valuable
technical support and collaboration. This project was independently funded, and the views expressed here do
not reflect those of the individuals or teams acknowledged. All errors are my own.
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greater satisfaction, and improved student welfare (Abdulkadiroğlu, Agarwal, & Pathak,
2017; Arteaga, Kapor, Neilson, & Zimmerman, 2022; Chen & Sönmez, 2006; Elacqua, Jacas,
Krussig, Méndez, & Neilson, 2024).

Yet integrating affirmative action into these frameworks poses important design chal-
lenges. In some cases, type-specific quotas no longer creates incentives for truth telling
to be the dominant strategy (Abdulkadiroğlu, 2005; Hatfield & Milgrom, 2005); in oth-
ers, even when maintaining the original DA properties, may unintentionally hurt the stu-
dents it intends to support (Kojima, 2012). These considerations are particularly relevant
to keep in mind, especially in the design and implementation of large-scale reforms, such
as those in New York City, where a DA-based mechanism substantially reduced unas-
signment rates and administrative placements (Abdulkadiroğlu et al., 2017), and in Chile,
which implemented in 2016 its nationwide Sistema de Admisión Escolar (SAE), that is also
DA-based.

Despite the strategy-proof nature of the DA algorithm, recent evidence indicates that
applicants frequently do not submit complete or well-informed preference lists. Arteaga
et al. (2022) and Larroucau, Rios, Fabre, and Neilson (2024) show that even under strategy-
proof mechanisms, applicants may stop their search prematurely, leaving feasible and
potentially desirable options unranked. While the former examines primary and sec-
ondary education in Chile and the latter focuses on higher education, both studies, both
cases highlight that many applicants in Chile face substantial information frictions and
have overly optimistic beliefs about their chances of admission. As a result, many fam-
ilies/students list too few schools, increasing their risk of remaining unassigned. This
paper addresses this problem by designing and evaluating a school choice policy that
recommends guaranteed school alternative for students are left unassigned under stable
matching.

My proposed approach leverages revealed preferences to generate a customized set
of school recommendations for each student, effectively extending their submitted prefer-
ence lists over potentially desirable schools. The goal of this policy is to increase placement
rates and reduce congestion without placing a further burden on applicants nor creating
incentives for them to adopt strategic behavior. This approach builds on and complements
recent work on behavioral interventions by shifting the focus to platform-level design im-
provements and contributes to the literature on school choice design policies that can pre-
serve strategy-proofness.

Evidence from Chile and other cities has shown that information frictions are a key
constraint in school choice processes. Hastings and Weinstein (2008) contribution showed
that information frictions have a direct effect in school choice decisions made by fami-
lies, by stating that there are high search costs associated. Similarly, Kapor, Neilson, and
Zimmerman (2020) show that in contexts where applicants are not fully informed, welfare
outcomes vary depending on the assignment mechanism, suggesting that some designs
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are more robust to information constraints than others.

Building on this, Arteaga et al. (2022) proposes a direct intervention to reduce frictions:
a “smart matching platform” that delivers live, personalized feedback on applicants’ ad-
mission chances. Implemented in Chile and New Haven, Connecticut, the platform pro-
vided real-time risk assessments as families filled out their applications. The intervention
changed applicants behavior and significantly reduced their risk of nonplacement. The
authors conclude that while strategy-proof mechanisms like DA simplify incentives, they
are not enough for efficient allocation alone. Effective allocation also requires supporting
families in the search process, where beliefs and information gaps influence outcomes.

Arteaga et al. (2022) identifies four key mechanisms behind these effects: (1) the search
process is costly, as families must gather information across multiple school attributes;
(2) applicants shorten their lists and stop searching when they believe they are likely to
be admitted to one of their preferences; (3) families are often overoptimistic about their
placement chances; and (4) substantial welfare gains can be achieved by improving the
application process itself. Larroucau et al. (2024) applied a similar approach by examining
Chile’s college admissions system which is also DA-based. They confirm earlier findings
on overoptimism, but further document that families make systematic mistakes due to lack
of awareness of options, misvaluation of school characteristics, and a lack understanding
of admission rules. Both studies highlight that information frictions, particularly those
linked to awareness and beliefs, play a central role in shaping outcomes.

The contributions of this paper to the literature on information frictions in school choice
settings are threefold. First, on the policy front, this paper introduces a novel, personalized
recommendation mechanism that is congestion-aware, compatible with the DA algorithm,
and scalable to large centralized systems. Unlike prior work that focuses on real-time feed-
back interventions, this approach remains effective even when applicants are unwilling or
unable to engage with dynamic information tools.

Second, the results reveal a positive general equilibrium impact: the intervention re-
duces unassignment rates by nearly 50% and increases aggregate expected utility by up to
6.7% on the main round, even after accounting for induced congestion. A detailed decom-
position of the utility changes shows that gains are primarily driven by newly assigned
students. Moreover, I develop a targeted version of the mechanism, applied only to unas-
signed students, which achieves comparable results while preserving original assignments
for all others.

Third, I document strong heterogeneity in the policy’s impact across applicants. In
particular, students exposed to excess demand benefit the most, suggesting that the mech-
anism effectively mitigates congestion in highly competitive markets. These findings offer
a novel contribution by presenting a structural solution to excess demand in one-to-many
matching markets without relying on modifications to the underlying mechanism nor ac-
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tive participation of the applicant.

The remainder of this paper is structured as follows. Section II provides an overview
of the Chilean school admission system, detailing its design, implementation, and key
features. Section III discusses the methodologies employed to estimate travel distances.
Section IV introduces the preference extension mechanism. Section V presents the utility
metrics and preference estimation techniques. Section VI examines the design and results
of the simulations, focusing on extensive, intensive margins and heterogeneous results by
excess demand. Finally, Section VII concludes.

II The Chilean School Admission System

A Context

Since 2016, Chile has adopted a centralized school admission system as part of the Ley de
Inclusión Escolar (School Inclusion Law), which significantly changed how students are ad-
mitted to schools. Priorly, families would apply directly to individual schools, which was
costly and time-consuming. Additionally, schools had the ability to establish their own
admissions criteria, where evidence showed that school were highly socially segregated
(Bellei C, 2013; Huerta Retamal, 2021; Valenzuela, Bellei, & Rı́os, 2014), leading to discrim-
ination based on sex and religion (Carrasco, Bogolasky, Flores, Gutiérrez, & San Martin,
2014). These practices contributed to widespread dissatisfaction and a growing concern
for change.

The School Inclusion Law sought to address these inequities by prohibiting selective
admissions in schools and creating a single, digital, and centralized platform to manage
applications. This introduced the SAE system (an acronym for Sistema de Admisión Escolar)
that defines a transparent set of rules and a priority-based assignment criterion (Correa et
al., 2022). The law also eliminated co-payments in fully public schools and mandated equal
access policies for voucher schools (i.e., private schools that receive public subsidies for
each enrolled student), which together comprise approximately 95% of schools nationwide
as of 2024. Another important aspect of this law is that it requires all data and algorithms
used in the process to be publicly available.1.

SAE was gradually implemented, starting in 2016 with the Magallanes region, and by
2020, it was nationwide. It applies nationally to all grades from pre-kindergarten through
12th grade. The system covers all public and voucher schools, but excludes fully pri-
vate institutions. The assignment process is governed by a variation of the DA algorithm,

1All data used in this paper—including information on the admission process and schools—is publicly
available through the Ministry of Education’s Open Data Website. The original assignment algorithm can be
requested directly from the Ministry. A publicly accessible version of the algorithm can be found in the Teth-
erEducation School Choice repository.
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adapted to meet Chile’s specific priorities rules and quotas. A format definition of the
Chilean school choice problem can be found in section . In all cases where there are more
vacancies than applicants, students must be assigned to their highest preference, whereas
in others, they are assigned given their order of priority (Biblioteca del Congreso Nacional,
2016).

A distinctive feature of the Chilean system is its detailed priority structure, designed
to promote fairness and continuity in school assignments. Top priority is granted to ap-
plicants applying to their current school, followed by applicants with siblings already en-
rolled in a school, children of school staff and former students. The system also reserves
quotas for students with disabilities, high academic achievement, and socioeconomically
disadvantaged backgrounds. When demand exceeds capacity, applicants with equal pri-
ority are subject to a random lottery to break ties (Correa et al., 2022).

Given this priority structure, the joint sibling assignment introduce an additional com-
plexity to the standard DA framework. To address this, the system employs family-level
lotteries, which increase the probability that siblings are assigned to the same school. This
design choice is particularly important in Chile, where there are no walk-zone priorities
and public school transportation is limited.

The assignment process takes place in two main rounds. Families submit their appli-
cations through an online platform developed by the Ministry of Education, where they
rank their preferred schools and programs. Families can list as many schools as they want,
with a minimum of two. They may list as many options as they wish, with a minimum of
two.2.

In the main round, which covers the vast majority of applicants, families receive a
single offer based on their submitted preferences and may choose to accept, conditionally
accept, reject, or conditionally reject the assignment. Table 1 presents summary statistics
for this round and its evolution over time. As shown in Panel D, slightly more than 50%
of applicants accept their assignment on average, while approximately 8% reject it. The
figure also shows that the average length of applicants’ rank-ordered lists is 3.4 schools.
Finally, Panel C illustrates that in the past four years, over 90% of applicants have received
an assignment in the main round.

In the complementary round, unassigned applicants may reapply to schools with re-
maining vacancies. If no seat is available at any of their chosen schools, students are as-
signed to the nearest school to their residence with open slots. In this round, all applicants
are required to accept the assignment they receive. Table 2 presents overall statistics for
this phase. The data show that participation in the complementary round is roughly 20% of

2Exceptions apply in certain cases, such as families in rural areas or those applying to highly specialized
programs without comparable alternatives, who may list only one school (Biblioteca del Congreso Nacional,
2016).
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that in the main round. Applicants also tend to submit short rank-ordered lists, averaging
fewer than three schools per application. Additionally, approximately 90% of students are
assigned to a school from their submitted list, while 5.5% are placed through proximity-
based assignment.

Although participation in SAE is voluntary, both students and schools are effectively
required to participate. Students cannot enroll in a participating school unless they ap-
ply through SAE, and schools may not admit students outside the system without official
approval. Those who fail to comply with SAE regulations are subject to significant penal-
ties including fines and funding risks (Huerta Retamal, 2021). As a result, compliance is
essential for schools to maintain operations and public financing.

B Timeline

The admission process follows a consistent timeline each year starting in July where schools
report available slots to the Ministry of Education. For the main round, families typically
have until August or September to submit their applications. During this period, they must
provide documentation to validate according priorities (in case they apply) such as sibling
or staff-member priority or disability status. It is also during this stage that most feedback
reports are issued, including warnings about the risk of non-assignment and personalized
recommendations (Arteaga et al., 2022).

Once applications are submitted, families have a limited time frame to modify their
submissions. In October, the Ministry processes the applications and with those, generates
a series of random numbers to serve as tiebreakers for oversubscribed slots and executes
the assignments. Afterwards, families then have a specific window to accept, condition-
ally accept, reject, or conditionally reject their match. Those who do not respond to their
assignment are assumed to have accepted their match. Families who reject their match,
remain unassigned, or did not participate in the main round can take part in the comple-
mentary round. Matched families can begin the enrollment process with their assigned
schools.

The complementary round, which usually takes place in November, allows families
to reapply to schools with available vacancies. However, unlike the main round, families
cannot remain unassigned; Those who are not matched to any of their preferred schools
are, by law, assigned to the nearest school with available seats within a 17 km radius. If
families are not satisfied with the assignment or receive no offer in this round, they can
seek administrative placement from the Ministry in the next round.

Following the two rounds, a third phase, referred to as the regularization period, be-
gins in January. During this phase, schools can marginally adjust their vacancies (that are
conditionally approved by the Ministry), and families can apply to wait-lists for specific
schools. Assignments during this phase are made on an in person first-come, first-served
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basis. This phase remains open throughout the school year to accommodate transfers and
late enrollments. However, it is the only part of the assignment process not allocated by
the formal algorithm.

School Inf rmati n
Rep rt

Main Applicati n
Peri d Main Results Release

Parents Resp nd t 
Main Results

Waiting List Results
Release

C mplementary
Applicati n Peri d

Final Results and
Enr llment

July August Oct ber 1st week  f
N vember

2nd week  f
N vember

3rd week  f
N vember

December

Figure 1: SAE 2023 Timeline

Figure 1 presents a timeline of the 2023 admission process, detailing the key phases
from the release of school information to the final enrollment. The timeline begins in July
with the publication of school characteristics and continues with the main application pe-
riod in August. Results from the main round are released in October, after which parents
have one week to accept or reject their offer. The second and third weeks of November
are dedicated to the release of waitlist results and the complementary application period,
respectively. Final results and enrollment take place in December. This timeline highlights
the sequential structure of the process and the short response windows families face when
making enrollment decisions.

III Distance Metrics

A Travel Distances and Times

In order to generate relevant and personalized school recommendations for students, it is
essential to incorporate information about the educational options available in their vicin-
ity. Prior research shows that applicants tend to have strong preferences for geographically
proximate schools (Chumacero, Gómez, & Paredes, 2011).

To estimate travel distances between students’ residences and nearby schools, I devel-
oped a custom API3 built on the Open Source Routing Machine (OSRM), a widely used and
reliable routing engine in both academic research and real-world applications. OSRM is
an open-source routing engine designed to calculate optimal routes and travel times based
on various transport profiles (e.g by foot, car, etc.) using geographic data. Its versatility
and accuracy have made it a well-established method in recent economic and policy lit-
erature, with applications ranging from urban planning to school assignments. In Chile,
the Ministry of Education employs OSRM during the complementary assignment round to

3The API interfaces with a locally hosted instance of the Open Source Routing Machine (OSRM), enabling
fast and flexible distance calculations by travel mode. For more information on OSRM, see http://project
-osrm.org/.
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Table 1: Main Round Statistics

Year 2016 2017 2018 2019 2020 2021 2022 2023
Panel A: Markets
Regions 1 5 15 16 16 16 16 16
Schools 63 2,172 6,421 8,064 8,014 7,979 7,941 7,893
Students 3,436 76,821 274,990 483,070 454,415 461,223 570,891 536,353

Panel B: Preferences
Average Preference Longitude 3.5 3.6 3.4 3.5 3.3 3.3 3.4 3.4
Median Preference Longitude 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Min Preference Longitude 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Max Preference Longitude 16.0 32.0 45.0 119.0 70.0 94.0 124.0 93.0

Panel C: Assignment offered
% Assigned 1st Preference 59.1 58.9 58.8 52.0 54.6 54.1 47.3 48.1
% Assigned Up to 3rd Preference 85.1 83.6 83.5 79.6 81.8 82.2 79.0 79.6
% Assigned Any Preference 91.2 91.3 91.1 89.6 90.6 91.5 91.2 91.9
% Unassigned 0.0 8.7 8.9 10.4 9.4 8.5 8.8 8.1
Average Preference Order Obtained 1.6 1.7 1.7 1.8 1.8 1.8 2.0 2.0
Median Preference Order Obtained 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Min Preference Order Obtained 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Max Preference Order Obtained 8.0 20.0 19.0 27.0 23.0 19.0 42.0 26.0

Panel D: Assignment choice
% Accepts Assignment 63.2 57.5 53.8 51.9 56.5 54.7 49.2 50.2
% Conditionally Accepts Assignment 4.2 12.1 15.4 13.0 15.5 15.4 17.8 18.3
% Denies Assignment 8.2 1.9 7.0 7.2 5.8 6.4 8.0 7.6
% Conditionally Denies Assignment 7.2 4.6 0.0 0.0 0.0 0.0 0.0 0.0
% No Response 17.2 15.2 14.9 17.5 12.8 15.0 16.1 15.8
% Forced to Waitlist 0.0 8.7 8.9 10.4 9.4 8.5 8.8 8.1
% Left Process 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Notes: This table reports key statistics from Chile’s main school admission round between 2016
and 2023. It is constructed with administrative data provided by the Ministry of Education.
Panel A summarizes the expansion of the centralized system across regions, schools, and appli-
cants over time. Panel B describes submitted preferences. Panel C shows assignment outcomes.
Panel D describes the choice done on the given assignment.

allocate students who remain unassigned, using walking distance as the principal metric
for determining school proximity. This institutional adoption emphasizes its validity as a
robust and practical tool for estimating student-school proximity.

OSRM supports multiple routing profiles tailored to specific transport modes, each
incorporating unique characteristics of mobility. The car profile uses road networks suit-
able for vehicles, accounting for speed limits, traffic patterns, and restrictions. It estimates
driving times by considering the most efficient vehicular paths available while including
additional constraints such as one-way streets, tolls, and restricted zones to provide re-
alistic routing. In contrast, the foot profile focuses on pedestrian pathways, sidewalks,
and walkways, emphasizing pedestrian accessibility. It estimates walking times by pri-
oritizing shorter, safer, and more direct paths for individuals traveling on foot, excluding
motorways or roads inaccessible to pedestrians.

For this analysis, I use both car and walking profiles to calculate travel times and dis-
tances between each student’s residence and the schools on their ranked list, as well as
all other available schools within a 5-kilometer radius. These calculations generate de-
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Table 2: Complementary Round Statistics

Year 2016 2017 2018 2019 2020 2021 2022 2023
Panel A: Markets
Schools 63 2,175 6,421 8,064 8,014 7,979 7,941 7,893
Students 439 9,507 46,698 87,604 74,111 108,119 110,155 97,593

Panel B: Preferences
Average Preference Longitude 2.7 2.8 2.8 2.7 2.7 2.7 2.7 2.7
Median Preference Longitude 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Min Preference Longitude 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Max Preference Longitude 13.0 30.0 32.0 66.0 40.0 109.0 52.0 61.0

Panel C: Assignment offered
% Assigned 1st Preference 83.4 83.0 46.4 65.0 72.1 72.0 67.4 72.1
% Assigned Up to 3rd Preference 96.6 97.4 64.0 86.4 90.9 91.5 88.5 91.2
% Assigned Any Preference 96.6 97.6 68.4 88.0 91.7 92.5 89.7 92.0
% Assigned by Distance 3.4 2.4 28.0 10.4 6.8 6.1 7.8 5.5
% Unassigned 0.0 0.0 3.6 1.6 1.6 1.3 2.4 2.5
Average Preference Order Obtained 1.1 1.2 1.6 1.4 1.3 1.3 1.3 1.3
Median Preference Order Obtained 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Min Preference Order Obtained 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Max Preference Order Obtained 3.0 5.0 18.0 17.0 11.0 12.0 12.0 9.0

Notes: This table reports key statistics from Chile’s complementary school admission round be-
tween 2016 and 2023. It is constructed with administrative data provided by the Ministry of
Education. Panel A summarizes the expansion of the centralized system across regions, schools,
and applicants over time. Panel B describes submitted preferences. Panel C shows assignment
outcomes.

tailed, student-level data that enable the inference of preferences and the construction of
personalized school recommendations based on the educational options available in each
student’s neighborhood. The data for the OSRM calculations is based on the geographic
maps of Chile available at July 2023, ensuring that estimates accurately reflect the state of
the nation’s transport and pedestrian infrastructure at the moment the students applied
that year. section provides a more detailed definition on the computational mechanisms
used and the assumptions made to make it computationally feasible.

A visual representation of the distance estimates, based on real geo-referenced data, is
provided in Figure 2. Additionally, interactive estimates for a randomly selected student
are available at the following link. Table 3 summarizes travel distances and times based
on students’ ranked preferences and recommended schools within a 5-kilometer radius.
Median values in Panel A show that, despite some students listing faraway schools, most
preferred options were within 2.6–5 km, depending on the mode. In contrast, Panel B
highlights that recommended schools were consistently closer, with median distances and
times tightly clustered around 3 km or 5 minutes, suggesting that the recommendation
system effectively identifies nearby alternatives.
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Figure 2: OSRM Routes for a Student in Chiloé, Chile

Table 3: Summary Statistics for Distance and Duration Metrics

Metric Main Round Complementary Round

Mean Median Mean Median
Panel A: Preferences
Foot distance (km) 12.69 2.42 20.27 2.60
Foot duration (minutes) 147.98 29.15 237.67 31.28
Car distance (km) 11.92 2.77 19.73 2.97
Car duration (minutes) 13.16 4.74 20.27 5.05

Panel B: Recommendations
Foot distance (km) 2.76 2.82 2.71 2.77
Foot duration (minutes) 33.21 33.97 32.62 33.31
Car distance (km) 3.09 3.20 3.03 3.14
Car duration (minutes) 5.21 5.34 5.13 5.25

IV Preference Extension Design

A Formal Definition

The primary methodological contribution of this paper is the development of a student-
personalized mechanism that extends applicants’ ranked lists using aggregated revealed
preferences from the applicant pool. The functional form of this mechanism is evidence-
based, constructed in light of the findings in (Arteaga et al., 2022), which show that stu-
dents are significantly more likely to include schools below their original preferences when
presented with personalized recommendations. This mechanism modifies the original
rankings, R≻s,c independently for each applicant,
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R̂≻s =


R≻s , if R≻s = Cs,D,

R≻s ∪ {c ∈ Cs,D \ R≻s | Us(c; Xs,c) > Us(clast; Xs,clast)} , otherwise.
(1)

Where clast ∈ R≻s denote the last school in the submitted ranking. I define the extended
ranking R̂≻s in Equation (1). If the submitted ranking R≻s includes all schools within
a predefined geographic radius D, it is considered complete, and no modifications are
made. Formally, this corresponds to the case where R≻s = Cs,D, where Cs,D denotes the set
of feasible schools located within distance D from the centroid of student s’s residence. In
such cases, I set R̂≻s = R≻s .

If R≻s is incomplete—that is, if there exist at least one school within Cs,D that the stu-
dent did not rank—then the mechanism extends the list by appending all unranked schools
c ∈ Cs,D \ R≻s whose estimated utility exceeds that of the lowest-ranked school in the orig-
inal list. I set this restriction to prevent making recommendation on undesirable schools
and reduce the impact induced congestion. These additional schools are ordered by de-
scending predicted utility and appended to the end of R≻s , preserving the original order
of preferences.

The utility function Us(c; Xs,c) captures the expected benefit student s derives from
being assigned to school c, conditional on observable characteristics of the student, the
school, and their interaction.

Throughout the analysis, I set D = 5 km as the relevant radius for defining a student’s
local choice set. This choice is motivated by the distribution of travel distances reported
in Table 3, which shows that 99% of students list at least one school within this distance.
As such, a 5-kilometer radius captures the relevant search space for nearly all applicants,
except in cases where families may anticipate changing their address. In Section VII, I
evaluate the robustness of this choice by varying D continuously between 0 and 5 km4,
using a resolution of 10 meters.

B Preference Statistics

Table 4 presents the impact of extending preferences during the main round of the year
2023, following the mechanism defined in Equation 1.

Panel A presents the impact of the mechanism on the length of students’ preference lists.
The results show a substantial expansion: during the main round, the average number of

4While the utilitarian cutoff could, in principle, determine admissible schools without a radius limit, com-
putational constraints require capping the search. Since over 99 % of baseline preferences lie within 5 km
and utility gains exhibit concavity beyond this distance (see subsection VII.A), this restriction is unlikely to
materially affect our results.
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ranked programs increases from 3.44 to 14.14, while the median rises from 3 to 8. In other
words, the typical applicant receives five additional programs with higher expected utility
than their originally last-listed option. This notable increase underscores the mechanism’s
potential to broaden applicants’ choice sets.

Table 4: Preferences Effects of the Preference Extension Mechanism: Main and Comple-
mentary Rounds

Main Round Complementary Round

Metric Original
Extended

(5 km)
Change

(%)
Original

Extended
(5 km)

Change
(%)

Panel A: Preferences
Average Preference Extension 3.44 14.14 +311.05%∗∗∗ 2.69 14.14 +424.28%∗∗∗

Median Preference Extension 3.00 8.00 +160%∗∗∗ 2.00 9.00 +350%∗∗∗

Panel B: School Performance
Average SIMCE Math Score 258.83 254.79 -1.56%∗∗∗ 260.10 257.88 -0.85%∗∗∗

Panel C: Distance to School
Walking Distance (km) 12.69 5.18 -59.18%∗∗∗ 20.27 6.06 -70.10%∗∗∗

Notes: This table summarizes changes in student preferences and school characteristics before
and after the implementation of the recommendation system, separately for the main and com-
plementary application rounds. Panel A reports both the total number and the average number
of new preferences generated by the preference extension mechanism. Panel B shows the average
academic quality of all schools. Panel C reports the average walking distance between students
and their preferred schools. Changes are expressed as percentage differences relative to the orig-
inal values. Asterisks indicate statistical significance at the 1% level.

Panel B focuses on the performance of schools measured by the average SIMCE Math
Score of the students from that school. A slight decrease of 1.56% is observed in the average
score, suggesting that while more options become available, some of these options may
correspond to schools with a slightly lower academic performance.

Finally, Panel C examines the walking distance to schools. The average walking dis-
tance decreases drastically by 59.18%, dropping from 12.69 km to 5.18 km on average.
This substantial reduction demonstrates the spatial proximity advantage provided by the
extension of preferences, improving the chances that the applicant accepts the recommen-
dation. The sharp decrease is particularly relevant for aleviating access costs and reducing
potential barriers related to commuting.

These results collectively illustrate the dual benefits of extending preferences: enhanc-
ing students’ choice sets while improving geographic accessibility. However, the slight
trade-off in school performance calls for additional measures to balance proximity with
educational quality.
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C Priorities extension

Extending school preferences for each student requires a corresponding reconstruction of
their priority status at schools they did not originally rank. To do so, I infer the priority
profile for each newly considered school based on observable student characteristics and
previously submitted preferences. Reconstructing students’ preference lists is relatively
straightforward; however, recovering associated priority information, such as whether a
sibling attends the school or a parent works there, requires additional data processing and
inference.

In particular, I am able to incorporate two key priority-related conditions: (i) whether
a sibling is currently enrolled in the school or is simultaneously applying to it, based on
administrative enrollment records; and (ii) whether the student is applying to the school
they currently attend.5

A potentially important source of variation in the simulations arises from the random
tie-breaking vector assigned to students by the Ministry of Education, which is used to
resolve ties among applicants with identical priority levels for oversubscribed programs.
In practice, this vector is determined using a truly random number generator based on the
magnitude of the last three earthquakes preceding the execution date of the assignment
algorithm. To reflect this randomness in the simulations, I generate 500 distinct random
seeds to assess the distribution and variability of outcomes under plausible tie-breaking
realizations. Additionally, I include the actual seed used in the 2023 assignment cycle in
order to recover the baseline estimates corresponding to the realized allocation.

In the robustness section (Subsection VII.F), I evaluate the sensitivity of the results to
alternative tie-breaking realizations. This exercise ensures that the conclusions are not
driven by a specific random draw but remain consistent across a wide range of plausible
scenarios.

V Utility Metrics

A Preference Estimates

Following Fack, Grenet, and He (2019), I estimate student preferences using a rank-ordered
logit model (Beggs, Cardell, & Hausman, 1981; McFadden, 1972; Train, 2009), under the as-
sumption of a stable and strategy-proof environment in which submitted rankings reflect

5Unfortunately, administrative records do not allows me to identify whether a parent of the student works
at a school unless that school was already included in the original preference list—either directly or through a
sibling’s application. Consequently, no students are assigned this type of priority in the simulations presented
here. However, the likelihood that a student would omit a school where a parent works is presumed to be
low, so this limitation is not expected to materially affect the results.
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true preferences. This approach is well suited to settings like the Chilean school assign-
ment system, where the DA mechanism removes incentives for strategic misreporting.
It also aligns with the theoretical framework developed in Agarwal and Somaini (2020),
which formalizes the conditions under which submitted rank-ordered lists can be inter-
preted as noisy but truthful signals of underlying utility.

The model assumes that the utility student s derives from school c is given by

vsc = δc + xcγ̄zs − dsc + εsc (2)

where δc is a school fixed effect, xc and zs are vectors of observed school and student
characteristics, respectively, and γ̄ captures the interaction effects between them. The term
dsc represents the disutility from walking distance, and εsc is an i.i.d. Type I extreme value
shock.

This specification allows preferences to be heterogeneous across students based on
observed traits. For instance, a positive interaction between academic quality and prior
achievement implies that high-performing students gain more utility from academically
strong schools. The distance term dsc enters negatively, capturing the empirical regular-
ity that proximity plays a major role in school choice. The school fixed effect δc absorbs
average unobserved desirability of school c after controlling for covariates and distance.

Under the rank-ordered logit framework, the model assigns a probability to each ob-
served ranking Rs = {Rs1, Rs2, . . . , RsKs}, where Rsk denotes the school ranked in position
k by student s. This is computed as the product of conditional choice probabilities:

P(Rs | x, zs; θ) =
Ks−1

∏
k=1

exp (δRsk + xRsk γ̄zs − dsRsk)

∑Ks
j=k exp

(
δRsj + xRsj γ̄zs − dsRsj

) (3)

This likelihood reflects the assumption that each chosen school is preferred to all re-
maining options at the time of selection. This is the function that is maximized in order
to obtain the parameters I needed. Once the parameters are estimated by maximum like-
lihood, I compute predicted utilities and implied probabilities of top-ranked choices. For
any school c ∈ Cs, the model-implied probability that student s ranks c first is given by

P(c is top-ranked by s) =
exp (δc + xcγ̄zs − dsc)

∑k∈Cs
exp (δk + xkγ̄zs − dsk)

(4)

I compute the probabilities defined in Equation 4 to proxy Us(c; Xs,c), i.e the expected
utility of being assigned to c, for every c ∈ Cs,D \ R≻s . This allows me to define the set
of extended preference and order them as defined in Equation 1. This is the key outcome
I use to generate personalized recommendations, and conduct welfare analysis over the
assignment in the simulations ahead.
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A critical identifying assumption in this framework is that applicants submit rank-
ordered lists that truthfully reflect their preferences. This assumption is justified in the
Chilean context due to the use of a strategy-proof DA mechanism. However, informational
frictions, behavioral biases, or search constraints may lead to incomplete or distorted lists.
In such cases, although the full ranking is unobserved, the portion submitted may still
reflect true preferences over the included alternatives, as argued in Arteaga et al. (2022).

The model also relies on the Type I extreme value assumption for the idiosyncratic error
term εsc, which yields the familiar logit structure and closed-form expressions. However,
this comes at the cost of imposing the Independence of Irrelevant Alternatives (IIA) prop-
erty, which may be restrictive in the presence of correlated unobserved attributes across
schools—such as similar schools in the same neighborhood or network.

Finally, the additivity of utility components imposes a linear structure on how covari-
ates enter the model. While this supports tractability, it may overlook non-linearities or
higher-order interactions. For example, the deterrent effect of distance may differ across
income groups, or the value of school quality may depend on how accessible it is 6.

Table 5 presents the estimated coefficients of Equation 2 in the main round, which is
based on students with high-precision georeferencing and school options within a 20 km
radius. Estimates on the complementary round can be found in Table A-1. Additional
robustness checks based on alternative distance cutoffs both for main and complementary
round are reported in Table A-2 and Table A-3, respectively.

To capture heterogeneity in preferences, the model is estimated separately for students
applying to (i) Pre-Kinder and Kindergarten, (ii) Lower Primary, (iii) Upper Primary, and
(iv) Secondary levels. This stratification allows the model to flexibly account for life-cycle
differences in school choice motivations.

Table 5 shows that walking time has a consistently negative and statistically signifi-
cant effect on utility across all education levels. This finding confirms the importance of
proximity in shaping school preferences and is consistent with the literature on Chilean
school choice (Chumacero et al., 2011). The magnitude of the distance coefficient is larger
for younger students, highlighting stronger proximity constraints in early education.

Similarly, the positive coefficients on the average SIMCE math scores suggest that fam-
ilies prefer higher-performing schools, confirming the role of academic quality in school
choice. Variation in these coefficients across school levels reflects heterogeneity in how aca-
demic performance is valued. Finally, significant effects on other school attributes—including
co-payment status, schedule type, and priority indicators—reveal that families take insti-
tutional features and eligibility rules into account when ranking schools.

6?? presents the main-round results under alternative distance specifications (e.g quadratic distance, min
between modes of transport). Across these specifications, I observe no statistically significant differences in
key outcomes.
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Table 5: Preferences Estimates and Grade Heterogeneity: Main round

Stated Preference Rank

Within 20 km Within 20 km Within 20 km Within 20 km Within 20 km
Top georef. quality Top georef. quality Top georef. quality Top georef. quality Top georef. quality

All levels Pre-Kinder & Kinder Elementary-School Middle-School High-School
Walking travel time (minutes)† -0.800∗∗∗ -1.200∗∗∗ -1.150∗∗∗ -0.943∗∗∗ -0.525∗∗∗

(1.000) (2.700) (2.600) (2.600) (1.300)
Average SIMCE Math Score† 0.706∗∗∗ 0.893∗∗∗ 0.768∗∗∗ 0.793∗∗∗ 0.527∗∗∗

(0.900) (2.100) (2.100) (2.200) (1.400)

Private School (Co-payment) 0.111∗∗∗ 0.229∗∗∗ 0.150∗∗∗ 0.102∗∗∗ 0.0332∗∗∗

(0.00497) (0.0110) (0.0106) (0.0114) (0.00811)

Afternoon -0.105∗∗∗ -0.160∗∗∗ -0.0828∗∗∗ -0.0972∗∗∗ 0.0638∗∗∗

(0.00626) (0.00824) (0.0129) (0.0300) (0.0209)

Full Day 0.0187∗∗∗ 0.0756∗∗∗ 0.0155 0.0619∗∗∗ 0.00573
(0.00513) (0.0108) (0.0100) (0.0128) (0.00934)

Priority: Currently Enrolled -5.061∗∗∗ -3.854∗∗∗ -4.977∗∗∗ -5.416∗∗∗ -5.070∗∗∗

(0.0312) (0.0910) (0.0539) (0.0620) (0.0583)

Priority: Sibling Attending 1.457∗∗∗ 1.810∗∗∗ 1.482∗∗∗ 1.295∗∗∗ 0.937∗∗∗

(0.0128) (0.0199) (0.0309) (0.0417) (0.0237)

Priority: Child of School Staff 1.154∗∗∗ 1.426∗∗∗ 1.163∗∗∗ 0.981∗∗∗ 0.663∗∗∗

(0.0481) (0.0690) (0.119) (0.163) (0.111)

Priority: Child of Alumni 0.146∗∗∗ 0.640∗∗∗ 0.168∗∗∗ 0.151∗∗∗ 0.162∗∗∗

(0.0183) (0.126) (0.0400) (0.0326) (0.0256)
Applications 975169 243739 228385 188120 314925
Applicants 272776 76772 63918 51365 80721
Pseudo-R2 0.193 0.0982 0.254 0.331 0.143
Min. preference length 2 2 2 2 2
Avg. preference length 3.575 3.175 3.573 3.662 3.901
Max. preference length 53 46 50 53 45

Notes: †Coefficient estimates and standard errors are multiplied by 100. Standard errors in paren-
theses and are clustered at the applicant level. Additional controls are included but omitted from
the table to preserve space. This table reports estimates from the conditional logit model de-
scribed earlier. The dependent variable is the stated rank order of school options. All models
are restricted to alternatives located within 20 km of the student’s residence and to students with
the highest available georeferenced quality data. Column (1) considers all grades, and columns
(2)–(5) further stratify the sample by educational level. Coefficients represent the marginal utility
of school attributes: positive coefficients indicate higher likelihood of a school being ranked more
favorably (i.e., earlier in the preference list), while negative coefficients reflect decreased prefer-
ence. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels.

The panel (a) in Figure 3 provides a visual representation of the relationship between
walking distance, SIMCE math scores (school performance), and the predicted probability
of a school being the most preferred option for a student. The vertical axis approximates
the expected utility of given a seat at that school, reflecting the combined influence of
proximity and academic performance on that outcome. As walking travel time decreases,
the probability of a school being most preferred rises significantly, emphasizing the im-
portance of proximity in school choice. Similarly, schools with higher SIMCE Math scores
exhibit higher predicted utilities, demonstrating the pivotal role of academic quality in
shaping preferences.

The joint influence of proximity and school performance is clearly illustrated in panel
(b), where the peaks represent schools that are both geographically close and high-performing.
These peaks reflect the additive structure of the utility function, reinforcing the theoretical
assumptions underlying the model. Additionally, the observed flattening of the red region
as distance increases highlights the presence of diminishing returns to performance, illus-
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trating the trade-offs families face when balancing academic quality against travel time.
Notably, the extended reach of the red zone along the vertical axis, corresponding to high-
performance schools located farther away, suggests that families are willing to tolerate
longer commutes in exchange for better academic outcomes. This finding aligns with ear-
lier evidence documented in (Chumacero et al., 2011), and further underscores the model’s
ability to capture key dimensions of revealed preferences in school choice.

(a) Angled View (b) Overhead Plane

Figure 3: Predicted Probability of a School Being Most Preferred by Distance and School
Performance

VI Preference Prediction Fit

To assess how well the proposed mechanism approximates families’ stated school prefer-
ences, I conduct a predictive exercise that attempts to recover these preferences without
directly observing them. To evaluate predictive performance under varying levels of strin-
gency, I construct several complementary metrics that capture different dimensions of fit
quality. These metrics are organized into two groups, corresponding to Panel A and Panel
B of Table 6.

Panel A reports metrics based on exact matches in both school identity and ranking
order. These results reveal that the mechanism predicts the first choice exactly for 36.4%
of applicants, and matches the top two and top three preferences for 12.9% and 2.7% of
applicants, respectively. While these rates may appear modest, they reflect a stringent
standard: not only must the correct schools be identified, but their precise order must
be recovered as well. These findings indicate that while rank-level prediction remains
challenging, the mechanism captures meaningful information about top-ranked options.

Panel B offers a more flexible assessment, relaxing the requirement of correct ranking
and focusing instead on the set of schools selected. Here, the mechanism correctly predicts
at least one school preference for nearly half of the applicants (49.3%), and matches at

19



CONSILIUMBOTS WORKING PAPER SERIES

Table 6: Prediction Accuracy Metrics: Main and Complementary Rounds

Metric Main Round Complementary Round
Panel A: Exact Pairs, Strict Order
First preference matches prediction 36.40% 25.02%
First two preferences match prediction 12.89% 9.55%
First three preferences match prediction 2.73% 1.13%
Last preference matches prediction 17.37% 14.91%

Panel B: Exact Pairs, Flexible Order
At least one pair matches prediction 49.32% 31.58%
At least 25% of pairs match 43.15% 30.19%
At least 50% of pairs match 26.89% 23.65%
At least 75% of pairs match 11.56% 10.78%
All preference-program pairs match 11.25% 10.73%

Notes: Panel A shows the fraction of exact matching applicant-school pairs in
a given preference order that are equal between the real preferences and the
predicted preferences. Panel B relaxes preference order.

least 25% of preferences for 43.2%. The share of applicants for whom 50% or more of their
preference list is recovered stands at 26.9%, and full list matches are achieved for 11.3%.
These results suggest that even when rank order is not preserved, the mechanism reliably
identifies relevant school alternatives within applicants’ true consideration sets.

Taken together, these metrics show that the proposed mechanism performs well in
approximating unobserved preferences—especially under relaxed criteria—suggesting its
potential value for recommendation design.

It is importat to note that prediction performance in the complementary round, shown
in Table 6, is consistently lower across metrics. This likely reflects the smaller scale of
the round—just one-fifth of the applicant pool—as well as distinct search behaviors under
tighter supply. While the model still captures meaningful patterns, the reduced accuracy
underscores a key consideration for applying such mechanisms in smaller markets: limited
data may hinder preference estimation and the effectiveness of recommendation tools.

VII Simulations

Building on the preference estimates presented earlier, this section outlines the imple-
mentation and results of simulations designed to assess the impact of extending parental
preference lists in the primary round of the 2023 (2024 admission) school choice process.
The goal is to quantify the potential benefits of implementing the proposed mechanism in
terms of reducing unassignment rates and expected utility—thereby illustrating the prac-
tical value of preference recovery and recommendation tools.

The simulations proceed in the following steps. First, I construct the extended prefer-
ence lists for each student based on the mechanisms described in Equation 1. Next, the
DA mechanism is re-run using the extended preferences and priorities, producing a new
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set of assignments. Finally, the outcomes of the original and extended assignments are
compared across key metrics, such as assignment rates, expected utility, distance traveled,
and school quality, with an emphasis on understanding the net effects of introducing the
mechanism.

The remainder of this section is structured as follows. Subsection VII.A presents the
main results, focusing on assignment rates, transitions, and mechanisms underlying changes
in unassignment. Subsection VII.B evaluates second-order outcomes, emphasizing utility
and school performance. Subsection VII.E examines heterogeneous results based on ex-
position to excess demand on the applied schools. Finally, Subsection VII.F assesses the
robustness of the results to variations in the lottery seed, highlighting the stability of the
findings.

A Extensive Margin

Table 7 presents the primary results of the analysis. Panel A shows a significant reduction
in the percentage of non-assigned students, from 8.07% in the original scenario to 4.20%
when preferences are extended, corresponding to a 48.03% decrease in the fraction of non-
assignment. This reduction highlights the effectiveness of the mechanism in increasing
assignment rates. To contextualize the magnitude of these results, a similar improvement
was documented by Abdulkadiroğlu et al. (2017), who reported a 45% increase in assign-
ment rates following the transition from the Boston mechanism to Deferred Acceptance in
a different setting.

Although smaller in magnitude, the complementary round also shows positive and
statistically significant improvements from extending preferences. In this phase, students
who remain unassigned are placed in their nearest school with available seats, thus smaller
results are expected. The simulated extension reduces the unassignment rate by 5,6%.

Panel B illustrates the transitions in assignment outcomes. Approximately 73.26% of
students retain the same assignment, while 5.28% of students who were previously unas-
signed, gain an assignment under the extended preferences. Interestingly, 17.27% of stu-
dents are assigned to a different school, indicating notable changes in the allocation struc-
ture. However, only 1.40% of students lose their assignments, suggesting that the overall
effect of the intervention is positive.

Figure 4 visualizes the percentage change in the fraction of unassigned students as the
radius of extended preferences increases, that is as the set Cs,D gets bigger for each student.
The figure shows a sharp decline in the unassignment rate with smaller radii, followed by
a convergence as the radius continues to expand to 5 km. This pattern can be explained
by two key mechanisms. First, expanding the radius increases the number of acceptable
schools added to applicants’ lists, which lowers the likelihood of remaining unassigned.
Second, as the radius grows larger, the additional schools tend to be less desirable than
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Table 7: Assignment Effects of the Preference Extension Mechanism: Main and Comple-
mentary Rounds

Main Round Complementary Round

Metric Original
Extended

(5 km)
Change

(%)
Original

Extended
(5 km)

Change
(%)

Panel A: Unassignment Rate
Fraction of Unassigned Students 8.07% 4.20% -48.03%∗∗∗ 2.50% 2.36% -5.62%∗∗

Panel B: Assignment Transitions
Fraction with the same assignment – 73.26% – – 83.78% –
Fraction who gained an assignment – – +5.28% – – +0.65%
Fraction who lost an assignment – – +1.40% – – +0.51%
Fraction assigned to a different program – 17.27% – – 13.22% –

Notes: This table reports changes in student assignment outcomes before and after implement-
ing the recommendation system, separately for the main and complementary rounds. Panel
A shows the percentage of students left unassigned after the allocation process. Panel B tracks
transitions in assignment status. Transition metrics are conditional on being assigned in either
scenario. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels.

those already listed, making them unlikely to surpass the utility on the applicant’s last-
ranked option. As a result, the marginal benefit of further extending the list diminishes.
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Figure 4: Percentage Change in Fraction of Unassigned Students Over Radius of Extended
Preferences

Overall, the results demonstrate the potential of preference extension mechanisms to
improve assignment rates within centralized school choice systems. The heterogeneity
underlying these gains is explored in subsection VII.E, where effects are disaggregated
by levels of excess demand. There, I find that a key mechanism driving the aggregate
improvements is the ability of extended preferences to redirect demand away from over-
subscribed schools, thereby alleviating congestion in high-demand institutions.

This naturally raises a concern: do students get diverted toward less preferred or lower-
quality schools, potentially offsetting the benefits of assignment? To address this question,
the following section examines intensive margin outcomes, in particular changes in net
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expected utility, resulting from the extension.

Together, these findings highlight the importance of addressing the limitations of short
preference lists and illustrate how aggregate preference recovery can contribute to more
equitable and efficient outcomes in large-scale assignment systems, particularly in contexts
characterized by concentrated demand and limited capacity.

B Intensive Margin

This intensive margin section examines the changes in utility resulting from the preference
extension mechanism. While the extensive margin focuses on first-order outcomes, such as
assignment rates, the intensive margin delves deeper into expected utility and satisfaction
of the resulting assignments.

Table 8 summarizes the main findings on changes in the model-implied expected util-
ity of assigned schools, using the proxy defined in Equation 4. Panel A shows that mean
expected utility increases under the extended preference scenario: by 2.38% when non-
assigned students are assigned zero utility (a conservative specification), and by 6.70%
when they are assigned a negative mean utility (an optimistic scenario). Additionally,
excluding non-assigned students from the analysis allows for the estimation of the net
cost associated with induced congestion, which amounts to 1.76%. These results suggest
that the majority of the gains stem from assigning seats to previously unplaced students,
although some applicants may lose access to their originally preferred schools. Impor-
tantly, we learn that the overall effect remains positive under the proposed recommenda-
tion mechanism. Although there are positive effects on the complementary round, these
effects are much lower, ranging from 0.84% to 2.37%.

Equation 5 presents a decomposition of the observed net effect under the conservative
scenario. The results indicate that the majority of utility gains are concentrated among
students who were newly assigned to a school, while a smaller share of students incur
marginal losses due to reallocation. This is why the ”better school” and ”worse school” al-
most net themselves. This trade-off highlights the redistributive nature of the mechanism:
overall system utility improves through a more equitable allocation of seats, even if some
students are reassigned from their initially preferred schools to accommodate those who
were previously unassigned.

Gross Gains: 9.49%︷ ︸︸ ︷
5.01%︸ ︷︷ ︸

Better school

+ 4.48%︸ ︷︷ ︸
Gains seat

+

Gross Losses: -7.11%︷ ︸︸ ︷
−5.14%︸ ︷︷ ︸

Worse school

+−1.97%︸ ︷︷ ︸
Loses seat

=

Net Effect︷ ︸︸ ︷
2.38% (5)

Panels B and C of the same table show that the changes in average academic perfor-
mance and walking distance of assigned schools are small and statistically vaguely signif-
icant. These results help address the concern raised in the previous subsection—namely,
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Table 8: Utility Effects of the Preference Extension Mechanism: Main and Complementary
Rounds

Main Round Complementary Round

Metric Interpretation Original
Extended

(5 km)
Change

(%)
Original

Extended
(5 km)

Change
(%)

Panel A: Mean Utility
U(Unassigned) = 0 Conservative scenario 0.139 0.143 +2.38%∗∗∗ 0.147 0.148 +0.84%
U(Unassigned) = −Ū Optimistic scenario 0.128 0.137 +6.70%∗∗∗ 0.137 0.140 +2.37%∗∗∗

U(Unassigned) =
NaN

Net congestion loss 0.230 0.228 –1.76%∗∗∗ 0.157 0.156 –0.65%

Panel B: School Performance
SIMCE Math Score Avg. Math at Assignment 251.12 251.04 –0.03%∗ 244.14 244.37 0.1%∗∗

Panel C: Distance to School
Walking Distance (km) Avg. Distance to Assignment 12.84 12.56 -2.19% 11.41 11.38 -0.23%

Notes: This table reports average utility, school performance, and distance outcomes before and
after implementing the recommendation system. Panel A presents three utility assumptions: (i)
a conservative scenario, where unassigned students are assumed to experience no utility loss;
(ii) an optimistic scenario, where unassigned students are assumed to lose utility equal to the
average assigned utility; and (iii) a NaN scenario, where unassigned students are excluded from
the calculation entirely. Negative utility changes in the NaN case reflect congestion effects among
previously assigned students. Asterisks denote statistical significance at the 1% level.

whether the newly assigned schools are of lower quality or substantially farther away.
The evidence suggests that the extended assignments do not systematically shift students
toward lower-performing or less accessible schools.
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Figure 5: Percentage Change in Utility Over Radius of Extended Preferences

Figure 5 illustrates the percentage change in mean utility as the radius to construct
the set Cs,D expands. The figure shows that utility gains are initially steep as the radius
increases, but they eventually plateau, demonstrating diminishing returns to additional
preference extension. This behavior aligns with the mechanism seen in the unassignment
rate outcomes: as the radius grows, additional schools are lees likely to increase utility
since their distance outweighs other desirable characteristics.

Two key mechanisms drive these results. First, previously unassigned students that
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applied to oversubscriped programs gain utility by being matched to schools, transitioning
from zero utility to a positive outcome. Second, there is a redistribution effect driven by the
preference extension. Students with shorter original preference relatively apply to more
schools closer to their neighborhoods, increasing their chances of displacing someone with
lower priority. Despite this trade-off, the net effect is positive, as evidenced by the overall
utility gains.

C Minimizing congestion loss

The previous simulations applied the preference extension mechanism universally to all
students, including those who had already received an assignment. While this approach
led to a substantial reduction in the share of unassigned students and an increase in overall
utility, it also introduced a non-negligible level of congestion. Specifically, some applicants
were displaced from their originally assigned programs to accommodate others who ben-
efited from the expanded choice set. Although the aggregate welfare effects remained
positive, this congestion implied that a subset of applicants could be made worse off by
being matched to a less-preferred or entirely unranked option. This motivates the search
for targeted applications of the recommendation mechanism that can be leveraged within
specific submarkets.

To mitigate these drawbacks, I propose an alternative, targeted implementation of the
preference extension mechanism. Rather than applying it globally, I restrict its application
exclusively to students who remain unassigned after the main round. Under this variant,
the original assignments are preserved. A new round, referred to here as the aftermarket
round, is then conducted, in which the mechanism is applied solely to the remaining unas-
signed applicants. The procedure follows three steps: (i) determine the initial assignments
based on the submitted preferences, (ii) update the seat availability based on those out-
comes, and (iii) reassign the unplaced applicants using the extended preferences on their
submarket.

This targeted implementation offers several key advantages. First, it preserves the in-
tegrity of the initial assignment; Table 9 shows that 91.93% of applicants (i.e all of those that
had an assignment) retain their original school placement, which is significantly higher
than the 73.26% observed under the universal mechanism. Second, no student is dis-
placed from a previously assigned program, nor are any students reassigned to a different
program. Third, the reduction in the share of unassigned students remains substantial,
decreasing from 8.07% to 4.57%, a 43.34% improvement. These gains are statistically indis-
tinguishable from those achieved under the full implementation, suggesting that similar
aggregate benefits can be attained with substantially less disruption to existing assign-
ments.

Table 10 presents the corresponding changes in expected utility. Under the conserva-
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Table 9: Assignment Effects of the Preference Extension Mechanism: Aftermarket Round

Aftermarket Round

Metric Original
Extended

(5 km)
Change

(%)

Panel A: Unassignment Rate
Fraction of Unassigned Students 8.07% 4.57% -43.34%∗∗∗

Panel B: Assignment Transitions
Fraction with the same assignment – 91.93% –
Fraction who gained an assignment – – +3.50%∗∗∗

Fraction who lost an assignment – – 0.00%
Fraction assigned to a different program – 0.00% –

Notes: This table reports changes in student assignment outcomes in the Aftermarket Round
for students unassigned in the Main Round, before and after implementing the recommen-
dation system. Panel A shows the percentage of students left unassigned. Panel B tracks
assignment transitions, conditional on being assigned in either scenario. Asterisks indicate
statistical significance at the 10% (*), 5% (**), and 1% (***) levels.

tive scenario, mean utility increases by 2.51%, closely mirroring the gains observed un-
der the full implementation. Notably, this improvement is not statistically distinguish-
able from that of the full-round application. Importantly, this aftermarket approach elimi-
nates the need to decompose utility changes into gains and losses across groups. Since no
students lose their assignment or are reassigned, the entire welfare improvement derives
from previously unassigned students gaining placements. This provides a cleaner identi-
fication of the mechanism’s net effect and avoids the equity concerns that can arise from
reallocation-based gains.

Taken together, these results suggest that the aftermarket application of the preference
extension mechanism provides a pragmatic and politically feasible pathway for implemen-
tation. It maintains the key benefits of increased assignment rates and improved expected
utility, while minimizing potential resistance from stakeholders who might otherwise be
adversely affected by reassignment. Given these properties, I argue that this constitutes
a compelling submarket for operational deployment. More broadly, this approach could
inform the design of similar interventions in submarkets where the benefits of preference
extension can be realized without displacing or disadvantaging other applicant groups.

D Second-Best Policies

One potential barrier to real-world uptake of the preference-extension mechanism is its
“black-box” nature: policy makers may object to using a model-implied ranking that is
not transparent or rule-based. In practice, most centralized DA systems specify simple
defaults for unlisted schools (e.g. nearest-distance), and practitioners may prefer clear, in-
terpretable heuristics. To bridge this gap, I propose and evaluate a menu of second-best
ordering policies on the same set of “desirable” schools Cs,D = { c : d(s, c) ≤ D} where
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Table 10: Utility Effects of the Preference Extension Mechanism: Aftermarket Round

Aftermarket Round

Metric Interpretation Original
Extended

(5 km)
Change

(%)

Panel A: Mean Utility
U(Unassigned) = 0 Conservative scenario 0.1394 0.1429 +2.51%∗∗∗

U(Unassigned) = −Ū Optimistic scenario 0.1281 0.1364 +6.42%∗∗∗

Panel B: School Performance
SIMCE Math Score Avg. Math at Assignment 251.12 251.11 –0.06%

Panel C: Distance to School
Walking Distance (km) Avg. Distance to Assignment 12.84 12.44 -3.11%∗∗

Notes: This table reports changes in student utility, academic quality, and distance outcomes in the
Aftermarket Round for students unassigned in the Main Round, before and after implementing
the preference extension mechanism. Panel A presents two utility scenarios: (i) a conservative
case where unassigned students experience no utility loss; (ii) an optimistic case where they lose
utility equal to the average assigned utility. No congestion-related loss is reported, as it is null.
Asterisks denote statistical significance at the 1% level.

D = 5 km and d(s, c) is walking distance (see Equation 1 on page 11). The optimal pol-
icy uses the estimated logit utilities Us(c; Xs,c) from Equation 2 on page 14 to rank Cs,D in
descending order.

Maintain the cutoff set C∗
s,D = {c ∈ Cs,D : Us(c) ≥ Us(clast)} fixed. Let π∗ denote the

“true” (model-optimal) ordering of C∗
s,D, and let πw be the exact reverse of π∗ (the worst

possible ordering). For any given ordering rule π, let us denote by Sg(π) the set of students
who gain a seat when preferences are reordered according to π. I further write |Sg(π)| for
the cardinality of this set. This plays two roles in our evaluation. First, it identifies the
beneficiaries of each ordering policy, allowing us to compute the aggregate utility gained
by all such students. Second, it accounts for differences in excess demand across orderings
7. Then the relative performance of π from optimal is

ρ(π) = 1 −
∑

s∈Sg(π∗)

Us
(
π∗(s)

)
− ∑

s∈Sg(π)

Us
(
π(s)

)
∑

s∈Sg(π∗)

Us
(
π∗(s)

)
− ∑

s∈Sg(πw)

Us
(
πw(s)

) , (6)

so that ρ(π) = 1 for the optimal policy π∗ and ρ(π) = 0 for the worst ordering πw.
I consider four simple heuristics as second-best candidates; i) Nearest-first, ii) Highest-
SIMCE-first, iii) Distance-SIMCE hybrid ordered as given by Equation 2. For each policy

7Even a “worst-first” ordering can boost overall utility by placing students atop schools where they are
most likely to be admitted, but such a rule may yield counter-intuitive or politically undesirable recommen-
dations.
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Figure 6: Second-Best Policies: Relative Performance and Avg. Utility per Seat Gained

π, I compute d(π) via Equation 6 , and also report the average absolute utility per seat gained

Ū(π) =
1

|Sg(π)| ∑
s∈Sg(π)

Us
(
π(s)

)
.

Figure 6 plots the normalized performance score ρ(π) for each second-best ordering
policy, with the average utility per seat gained in parentheses above each bar.

The simplest distance-based rule, recovers about 42% of the optimal welfare gain (ρ ≈
0.42), boosting average utility to 0.1143. Prioritizing school quality alone performs some-
what better, capturing roughly 54% of the model’s gain (ρ ≈ 0.54) and raising average
utility to 0.1151. The disrance and quality hybrid combines these dimensions, letting fami-
lies “run the extra mile” for higher-quality schools and delivers substantially better perfor-
mance (ρ ≈ 0.65), with average utility 0.1159. By explicitly balancing distance and SIMCE
scores, this rule aligns more closely with what many parents prioritize: attending a strong
school without unduly long commutes.

In sum, even simple heuristics that trade off proximity and quality can recover a large
share of the welfare benefits of the full logit–based ordering, offering transparent, rule-of-
thumb alternatives that better match families’ own considerations. Nonetheless, the resid-
ual gap to the optimal ranking reflects other school and applicant-specific factors, such as
voucher availability, shift schedules, and individual match, that these simple heuristics do
not capture.
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E Excess Demand

This section explores the heterogeneous effects of the preference extension mechanism ob-
served in the simulation results. Specifically, I examine how the impact of the mechanism
varies according to two indices of excess demand experienced by applicants in their sub-
mitted rank-ordered lists. The objective is to assess whether the mechanism helps mitigate
excess demand from the applicant’s perspective in oversubscribed school choice systems,
thereby improving assignment outcomes in highly congested environments.

Let s ∈ S denote a student and c ∈ C denote a school program. Define Isc ∈ {0, 1} as an
indicator variable equal to 1 if student s includes program c in their submitted preference
list R≻s , and 0 otherwise. Also, let Cc ∈ N denote the capacity (i.e., the number of available
seats) at program c. It follows that the Relative Excess Demand (RED) for program c is then
defined as the proportional difference between demand and supply, normalized by the
program’s capacity

RED(c) =
1

Cc

(
∑
s∈S

Isc − Cc

)
. (7)

This measure quantifies excess demand in relative terms: it is positive if demand ex-
ceeds capacity, zero if demand matches capacity, and negative when the program is under-
demanded. In practice, RED(c) may be computed over the full applicant pool or con-
ditional on specific subgroups (e.g., geographic region, priority type) to assess localized
competition for seats.

Table 11: Exposure to Relative Excess Demand (RED) Across Applicants and Schools

Metric Main Round Complementary Round
Panel A: Applicants
Share with at least one preference with RED > 0 95.6% 72.1%
Share with all preferences with RED > 0 65.2% 25.2%
Avg. share of preferences with RED > 0 84.0% 48.9%

Panel B: Schools
Share of programs with RED > 0 50.8% 18.8%
Share of schools with at least one program with RED > 0 67.7% 48.7%
Share of schools with all programs with RED > 0 14.4% 1.3%
Avg. share of programs with RED > 0 per school 39.6% 16.6%

Notes: RED (Relative Excess Demand) measures whether demand for a program exceeds its
capacity. A value of RED > 0 indicates excess demand. All metrics report the proportion of
applicants or schools/programs meeting the specified condition in each round.

Table 11 presents summary statistics based on Equation 7, capturing exposure to ex-
cess demand across applicants and school programs in both the main and complementary
rounds.

Panel A reports student-level exposure. In the main round, 95.6% of applicants in-
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cluded at least one program with positive excess demand (RED > 0), and 65.2% exclu-
sively listed such programs, highlighting the intensity of competition faced by a majority
of applicants. The average share of over-demanded preferences per applicant is 84.0%. In
contrast, these values drop substantially in the complementary round, with only 72.1% of
applicants listing any over-demanded program and just 25.2% listing only over-demanded
programs. This reflects the lower levels of congestion and weaker competition in the sec-
ond round.

Panel B reports school-level statistics. In the main round, 50.8% of programs face ex-
cess demand, and 67.7% of schools have at least one such program. Additionally, 14.4%
of schools experience excess demand across all their offered programs. These figures drop
significantly in the complementary round—only 18.8% of programs and 48.7% of schools
face any excess demand, and just 1.3% of schools see it across all their programs. On aver-
age, only 16.6% of a school’s programs are over-demanded in the complementary round,
compared to nearly 40% in the main round.

Together, these patterns underscore the high levels of congestion in the main round and
suggest that the preference extension mechanism may be particularly effective in settings
where demand is concentrated among a limited set of schools. To quantify the potential
gains from such interventions, I define student-level measures of exposure to excess de-
mand

MREDs =
1

|R≻s |
∑

c∈R≻s

RED(c) (8)

CREDs = ∑
c∈R≻s

1 {RED(c) > 0} (9)

Equation 8 defines the Mean Relative Excess Demand (MRED), which captures the av-
erage level of excess demand across all programs listed by student s. Higher values of
MREDs indicate that a student’s preferences are concentrated in more oversubscribed pro-
grams. This provides a responsive measure of excess demand at the intensive margin.
In the other hand, Equation 9 defines the Count of Over-Demanded Preferences (CRED),
which measures how many of the programs in student s’s list are over-demanded (i.e.,
RED(c) > 0). This discrete count provides an extensive margin measure of the competi-
tion faced by the student.

In order to graphically understand the distribution of these indexes, Figure 7 presents
the average program-level MRED across comunas (administrative units comparable to coun-
ties) in Chile’s two largest urban areas. The maps show that excess demand is geograph-
ically concentrated in the residential centers of these cities, particularly in higher-income
neighborhoods. However, when the same statistic is computed at the applicant level, the
spatial pattern changes: excess demand appears more evenly distributed across the urban
landscape. This divergence suggests that applicants from a broad range of neighborhoods
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Figure 7: Average Relative Excess Demand (MRED) Across Schools and Students in Santi-
ago and Concepción
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tend to apply disproportionately to schools located in central, affluent areas—likely at-
tracted by perceived higher quality, stronger academic reputations, or better-funded pro-
grams.

Avg. = −48.03%
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Figure 8: Changes in Unassignment and Utility Outcomes by Measures of Exposure to
Excess Demand

Figure 8 presents the main outcomes—unassignment rates and expected utility—disaggregated
by quintiles of MREDs and by values of NREDs of the main round.8 The figure shows
that both the reduction in unassignment and the gains in expected utility are concentrated
among students who initially applied to highly oversubscribed programs. Consistent with
this, (Arteaga et al., 2022) find that students who receive targeted warnings are more likely
to add non-oversubscribed schools to their ranked choices. Panel (a) illustrates that stu-
dents in the top quintile of MREDs experience a reduction in unassignment of over 70%,
which is nearly 50% higher than the average reduction of 48%. Similarly, panel (b) shows
that utility gains are also concentrated in this upper quintile. Importantly, students in
the lowest quintile—those whose submitted preferences included little to no excess de-

8The same set of outcome comparisons for the complementary round is shown in Figure A-2.

32



DESIGNING SMART SCHOOL CHOICE RECOMMENDATIONS: HEURISTICS FOR
SURE ALTERNATIVES

mand—do not exhibit statistically significant effects. Across quintiles, the differences in
means are statistically significant.

Panels (c) and (d) replicate the analysis using NREDs, an absolute count of over-demanded
programs in each student’s preference list. These panels reveal a pattern of diminishing re-
turns: while students with a greater number of over-demanded choices benefit more from
the extension mechanism, longer initial preference lists also reduce the probability of non-
assignment through exhaustion alone. Thus, the effect of the mechanism is attenuated for
those with already extensive preference submissions. Nonetheless, students who listed no
over-demanded programs (NREDs = 0) experience no measurable improvement in either
outcome, as expected.

Because exposure to oversubscribed programs is highly correlated with the activation
of the preference extension mechanism, utility gains are not evenly distributed across
grade levels. Instead, they are systematically concentrated in entry points to the school
system. In particular, students applying to kindergarten and 9th grade—both key tran-
sition stages—experience the largest improvements. As shown in Figure A-1, these two
grades are the only ones with average utility gains that are significantly above the overall
mean effect of 2.38%.

In sum, the results presented in this section offer strong evidence that the preference
extension policy effectively alleviates excess demand in oversubscribed school choice mar-
kets. By expanding applicants’ ranked lists with personalized, high-utility alternatives, the
mechanism reduces the pressure on highly demanded schools and improves overall match
efficiency. Importantly, it provides meaningful fallback options for students who are un-
likely to secure admission to their originally oversubscribed preferred schools.

F Robustness to Random Tie-Breaking Orders

This section evaluates whether the results presented in section VII are robust to changes in
the random priority vector assigned by the Ministry of Education, which is used to break
ties among applicants with identical priority in oversubscribed programs.

To assess the stability of the main findings, I simulate 500 alternative priority orderings
by varying the random seed used to generate tie-breaking vectors. This exercise allows
for an evaluation of how sensitive the reduction in unassignment rates and the observed
utility gains are to the randomness inherent in the DA algorithm’s implementation.

Figure 9 presents kernel density estimates of the outcome distributions across these 500
simulated scenarios, for both the main and complementary rounds. Each panel includes
key summary statistics: the mean, median, baseline (actual) seed, and the 5th and 95th
percentiles to capture the range of plausible outcomes.
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Figure 9: Distribution of Outcomes Under Random Priority Orderings: Unassignment
Rates and Utilities

The results indicate a high degree of stability. For the unassignment rate, the distri-
bution is tightly centered around the mean change of approximately −48%, with 95% of
scenarios falling between −48.4% and −47.9%. Similarly, the distribution of expected util-
ity gains is narrowly concentrated around a mean of 2.48%, with 95% of values ranging
between 2.4% and 2.6%.

These findings demonstrate that both extensive-margin (assignment rates) and intensive-
margin (expected utility) outcomes are highly robust to the randomness introduced through
tie-breaking. The core results of the preference extension mechanism hold consistently, re-
gardless of the specific seed used for priority ordering.

VIII Conclusion

This paper addresses a persistent challenge in centralized school assignment systems: the
high rate of non-assignment caused by incomplete or misinformed preference submis-
sions, particularly in settings with excess demand. Building on recent work that highlights
the limitations of strategy-proof mechanisms in the presence of information frictions, I pro-
pose a preference extension mechanism that leverages revealed preferences and estimated
utilities to recommend additional, desirable schools to applicants. This intervention op-
erates ex-post, is DA-compatible, and is designed to be computationally feasible and scal-
able.
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Simulation results from the Chilean school assignment system indicate that the pro-
posed mechanism can significantly reduce the unassignment rate—by nearly 50% in the
main round—while increasing expected utility at the system level. These gains are pri-
marily concentrated among students who were previously unassigned or who applied to
oversubscribed programs. Building on this, I propose a targeted application of the mech-
anism within a specific submarket that achieves equivalent benefits without displacing
any previously assigned students. Importantly, the intervention does not systematically
reassign students to lower-performing or more distant schools.

Several directions for policy and future research remain open. First, real-world im-
plementation through field experiments could provide valuable evidence on behavioral
responses, such as changes in truth-telling or assignment acceptance rates, that cannot be
captured in the simulation. Second, this paper focuses on imputing preferences at the
intensive margin, conditional on submitted lists. A natural extension is to develop mech-
anisms that generate recommendations at the extensive margin, for students who submit
no preferences at all (e.g., transitions from pre-K to primary or from schools offering only
basic levels to those with secondary education). Finally, further theoretical work is needed
to characterize the types of submarkets in which this family of recommendation mecha-
nisms may be particularly useful for addressing other policy-relevant objectives, such as
affirmative action.

Overall, this study demonstrates that modest, data-driven improvements to the plat-
form design can generate meaningful welfare gains in large-scale assignment systems,
without requiring strategic sophistication or proactive engagement from applicants. By re-
distributing excess demand and expanding access to relevant options, the proposed mech-
anism offers a tractable and equitable path forward for education policy.
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Chumacero, R. A., Gómez, D., & Paredes, R. D. (2011). I would walk 500 miles (if it
paid): Vouchers and school choice in chile. Economics of Education Review, 30(5), 1103-
1114. Retrieved from https://www.sciencedirect.com/science/article/

pii/S0272775711000999 (Special Issue on Education and Health) doi: https://
doi.org/10.1016/j.econedurev.2011.05.015

Correa, J., Epstein, N., Epstein, R., Escobar, J., Rios, I., Aramayo, N., . . . Subiabre, F. (2022,
March). School Choice in Chile. Operations Research, 70(2), 1066-1087. doi: 10.1287/
opre.2021.2184

37

https://linkinghub.elsevier.com/retrieve/pii/S0022053120300661
https://linkinghub.elsevier.com/retrieve/pii/S0022053120300661
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07052013000100019&lng=en&nrm=iso&tlng=en
http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-07052013000100019&lng=en&nrm=iso&tlng=en
https://automatingsociety.algorithmwatch.org
https://automatingsociety.algorithmwatch.org
https://www.bcn.cl/leychile/navegar?idNorma=1093444
https://bibliotecadigital.mineduc.cl/handle/20.500.12365/18534
https://bibliotecadigital.mineduc.cl/handle/20.500.12365/18534
https://www.sciencedirect.com/science/article/pii/S0022053104002418
https://www.sciencedirect.com/science/article/pii/S0022053104002418
https://www.sciencedirect.com/science/article/pii/S0272775711000999
https://www.sciencedirect.com/science/article/pii/S0272775711000999


CONSILIUMBOTS WORKING PAPER SERIES

Correa, J., Epstein, R., Escobar, J., Rios, I., Bahamondes, B., Bonet, C., . . . others (2019).
School choice in chile. In Proceedings of the 2019 acm conference on economics and com-
putation (pp. 325–343).
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Chilean School Choice Problem Definition

The school assignment problem in Chile can be formally described using the standard
one-to-many matching framework. Let K denote the set of educational levels, including
pre-kindergarten and kindergarten (preschool), 1st through 8th grade (primary), and 9th
through 12th grade (secondary). Each school program c ∈ C is offered at one or more
levels in K, and students can only apply to programs that correspond to their educational
level. For clarity, the following exposition focuses on a single level; the interaction across
levels, especially within family applications, is addressed later in the paper.

Let S = {s1, . . . , sN} be the set of students and C = {c1, . . . , cM} the set of school
programs. Each program c ∈ C has a finite capacity denoted Cc ∈ N, representing the
number of available seats. Students are endowed with strict preference orderings over
programs, denoted ≻s for each s ∈ S , where c ≻s c′ indicates that student s strictly prefers
program c over c′. Students who submit a truncated preference list are interpreted as
preferring to remain unassigned rather than be placed in an unlisted school.

Each school program c ∈ C has a weak priority ordering ≳c over students, where s ≳c s′

means student s has weakly higher priority than s′ at program c. These weak orderings
are then refined into strict priority rankings ≻c through random tie-breaking mechanisms,
resulting in strict profiles ≻C= (≻c1 , . . . ,≻cM).

A matching µ is a function that maps students and programs to one another such that:

1. For each student s ∈ S , µ(s) ∈ C ∪{∅}, where µ(s) = ∅ denotes that s is unassigned.

2. For each program c ∈ C, µ(c) ⊆ S and |µ(c)| ≤ Cc.

3. For all s ∈ S and c ∈ C, c = µ(s) if and only if s ∈ µ(c).

This formalism ensures that matchings respect both capacity constraints and the one-
to-one assignment constraint on students. That is, no school may admit more students
than it has seats, and no student may be assigned to more than one program.
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Travel Distances and Time Computation

To estimate travel distances and durations between students and school programs, I imple-
ment a multi-step process combining spherical approximations and network-based rout-
ing algorithms. The procedure begins by collecting geographic coordinates (latitude and
longitude) for all students and schools from administrative datasets, which serve as the
basis for all subsequent computations.

Using these coordinates, I calculate great-circle distances between each student-program
pair by applying the Haversine formula. This approach yields a spherical approximation
of the shortest distance between two points on the Earth’s surface. Only pairs with dis-
tances under 5 kilometers, as measured by this method, are retained for further processing.
This filtering step ensures computational feasibility and restricts the analysis to spatially
relevant alternatives. The Haversine distance is computed using Equation 10.

For the filtered set of pairs, I compute precise travel distances and durations using the
Open Source Routing Machine (OSRM), which enables mode-specific routing. Under the
car profile, OSRM uses vehicular road networks to estimate travel times, incorporating
constraints such as speed limits and traffic accessibility. Under the pedestrian profile, it
emphasizes walking paths, sidewalks, and pedestrian-safe routes to yield realistic walking
times.

In the rare cases where OSRM fails to return a valid estimate (fewer than 1% of cases),
I fall back on the Haversine distance as a proxy. Travel times are then imputed assuming
constant average speeds: 30 km/h for vehicle travel and 5 km/h for walking.

Haversine Formula for Great-Circle Distance

d = 2r · arcsin

(√
sin2

(
∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2) sin2

(
∆λ

2

))
(10)

Here, r denotes the Earth’s radius, ϕ1, ϕ2 are the latitudes, and λ1, λ2 are the longitudes
of the two points, all expressed in radians. The terms ∆ϕ = ϕ2 − ϕ1 and ∆λ = λ2 − λ1

represent the respective coordinate differences.
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Preference estimation

Table A-1: Grade Heterogeneity on Preferences Estimates: Complementary round

Stated Preference Rank

Within 20 km Within 20 km Within 20 km Within 20 km Within 20 km
Top georef. quality Top georef. quality Top georef. quality Top georef. quality Top georef. quality

All levels Pre-Kinder & Kinder Elementary-School Middle-School High-School

Walking travel time (minutes)† -0.696∗∗∗ -1.230∗∗∗ -1.100∗∗∗ -0.502∗∗∗ -0.550∗∗∗

(0.0331) (0.105) (0.0990) (0.0881) (0.0404)

Average SIMCE Math Score† 0.634∗∗∗ 0.909∗∗∗ 0.401∗∗∗ 0.322∗∗∗ 0.744∗∗∗

(0.0399) (0.0943) (0.0941) (0.100) (0.0583)

Private School (Co-payment) 0.211∗∗∗ 0.216∗∗∗ 0.292∗∗∗ 0.320∗∗∗ 0.136∗∗∗

(0.0239) (0.0504) (0.0515) (0.0706) (0.0366)

Afternoon 0.0222 -0.0308 -0.00218 0.0413 0.188∗∗∗

(0.0262) (0.0406) (0.0535) (0.0973) (0.0589)

Full Day 0.00613 0.139∗∗∗ 0.00406 0.00442 -0.0160
(0.0214) (0.0508) (0.0480) (0.0516) (0.0332)

Priority: Currently Enrolled -1.870∗∗ 35.78∗∗∗ -31.63∗∗∗ -30.41∗∗∗ -28.84∗∗∗

(0.758) (0.758) (0.737) (0.777) (0.544)

Priority: Sibling Attending 0.690∗∗∗ 1.077∗∗∗ 0.608∗∗∗ 0.427∗∗∗ 0.614∗∗∗

(0.0526) (0.114) (0.112) (0.117) (0.0893)

Priority: Child of School Staff 0.815∗∗∗ 1.228∗∗∗ 0.450 1.114∗∗∗ 0.538
(0.195) (0.332) (0.326) (0.416) (0.465)

Priority: Child of Alumni 0.837∗∗∗ 1.259∗∗∗ 1.049∗∗∗ 0.890∗∗∗ 0.651∗∗∗

(0.0429) (0.249) (0.0819) (0.0736) (0.0721)

Applications 57904 11193 12344 9093 25274
Applicants 21667 4160 4771 3537 9199
Pseudo-R2 0.0308 0.0454 0.0487 0.0379 0.0222
Min. preference length 2 2 2 2 2
Avg. preference length 2.672 2.691 2.587 2.571 2.747
Max. preference length 46 46 34 21 17

Notes: Notes: †Coefficient estimates and standard errors are multiplied by 100. Standard errors
in parentheses and clustered at the applicant level. Additional controls are included but omitted
from the table to preserve space. This table reports estimates from the conditional logit model
described earlier. The dependent variable is the stated rank order of school options. All models
are restricted to alternatives located within 20 km of the student’s residence and to students with
the highest available georeferenced quality data. Column (1) considers all grades, and columns
(2)–(5) further stratify the sample by educational level. Coefficients represent the marginal utility
of school attributes: positive coefficients indicate higher likelihood of a school being ranked more
favorably (i.e., earlier in the preference list), while negative coefficients reflect decreased prefer-
ence. Asterisks indicate statistical significance at the 10% (*), 5% (**), and 1% (***) levels.
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Preference estimation robustness

A-1 Radius selection

Table A-2: Radius Heterogeneity on Preferences Estimates: Main Round

Stated Preference Rank

Within 100 km Within 50 km Within 20 km Within 10 km Within 50 km Within 2 km
Only best quality Only best quality Only best quality Only best quality Only best quality Only best quality

All levels All levels All levels All levels All levels All levels
Walking travel time (minutes)† -0.262∗∗∗ -0.522∗∗∗ -0.800∗∗∗ -1.260∗∗∗ -2.210∗∗∗ -6.160∗∗∗

(0.00591) (0.00920) (0.0101) (0.0140) (0.0248) (0.102)

Average SIMCE Math Score† 0.657∗∗∗ 0.689∗∗∗ 0.706∗∗∗ 0.723∗∗∗ 0.756∗∗∗ 0.847∗∗∗

(0.00874) (0.00893) (0.00917) (0.00988) (0.0121) (0.0249)

Private School (Co-payment) 0.110∗∗∗ 0.107∗∗∗ 0.111∗∗∗ 0.134∗∗∗ 0.140∗∗∗ 0.137∗∗∗

(0.00476) (0.00484) (0.00497) (0.00535) (0.00669) (0.0151)

Afternoon -0.103∗∗∗ -0.104∗∗∗ -0.105∗∗∗ -0.109∗∗∗ -0.120∗∗∗ -0.114∗∗∗

(0.00608) (0.00616) (0.00626) (0.00658) (0.00757) (0.0136)

Full Day 0.0243∗∗∗ 0.0208∗∗∗ 0.0187∗∗∗ 0.0266∗∗∗ 0.0307∗∗∗ 0.0540∗∗∗

(0.00492) (0.00501) (0.00513) (0.00554) (0.00676) (0.0133)

Priority: Currently Enrolled -5.073∗∗∗ -5.082∗∗∗ -5.061∗∗∗ -4.993∗∗∗ -4.867∗∗∗ -4.580∗∗∗

(0.0306) (0.0309) (0.0312) (0.0322) (0.0358) (0.0574)

Priority: Sibling Attending 1.437∗∗∗ 1.444∗∗∗ 1.457∗∗∗ 1.494∗∗∗ 1.553∗∗∗ 1.793∗∗∗

(0.0124) (0.0125) (0.0128) (0.0134) (0.0151) (0.0252)

Priority: Child of School Staff 1.092∗∗∗ 1.129∗∗∗ 1.154∗∗∗ 1.179∗∗∗ 1.177∗∗∗ 1.527∗∗∗

(0.0456) (0.0467) (0.0481) (0.0525) (0.0606) (0.110)

Priority: Child of Alumni 0.179∗∗∗ 0.158∗∗∗ 0.146∗∗∗ 0.147∗∗∗ 0.147∗∗∗ 0.172∗∗∗

(0.0173) (0.0177) (0.0183) (0.0196) (0.0238) (0.0453)
Applications 1040501 1016255 975169 865621 627171 194805
Applicants 287581 282481 272776 248407 191487 70499
Pseudo-R2 0.189 0.192 0.193 0.198 0.212 0.261
Min. preference length 2 2 2 2 2 2
Avg. preference length 3.618 3.598 3.575 3.485 3.275 2.763
Max. preference length 93 93 53 53 53 15

Notes: †Coefficient estimates and standard errors are multiplied by 100. Standard errors in paren-
theses, clustered at the applicant level. Additional controls are included in the model but omitted
from the table for brevity. This table reports estimates from conditional logit models where the
dependent variable is the stated preference rank of school options. All columns are restricted to
alternatives with top-tier georeferencing quality. Each column varies the radius used to define
the choice set, ranging from 100 km to 2 km. Coefficients represent the marginal utility associ-
ated with each attribute: positive values indicate higher likelihood of a school being ranked more
favorably, while negative values imply reduced preference. Asterisks indicate statistical signifi-
cance at the 10% (*), 5% (**), and 1% (***) levels.
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Table A-3: Radius Heterogeneity on Preferences Estimates: Complementary Round

Stated Preference Rank

Within 100 km Within 50 km Within 20 km Within 10 km Within 50 km Within 2 km
Only best quality Only best quality Only best quality Only best quality Only best quality Only best quality

All levels All levels All levels All levels All levels All levels

Walking travel time (minutes)† -0.318∗∗∗ -0.445∗∗∗ -0.696∗∗∗ -1.050∗∗∗ -1.780∗∗∗ -3.810∗∗∗

(0.0241) (0.0284) (0.0331) (0.0498) (0.0939) (1.120)

Average SIMCE Math Score† 0.599∗∗∗ 0.613∗∗∗ 0.634∗∗∗ 0.659∗∗∗ 0.689∗∗∗ 0.812∗∗∗

(0.0383) (0.0386) (0.0399) (0.0436) (0.0558) (0.300)

Private School (Co-payment) 0.209∗∗∗ 0.205∗∗∗ 0.211∗∗∗ 0.212∗∗∗ 0.272∗∗∗ 0.447∗∗

(0.0229) (0.0231) (0.0239) (0.0262) (0.0335) (0.193)

Afternoon 0.0157 0.0171 0.0222 0.0116 -0.0194 -0.0738
(0.0255) (0.0256) (0.0262) (0.0280) (0.0338) (0.188)

Full Day -0.00214 -0.00155 0.00613 0.00483 -0.0000229 0.126
(0.0207) (0.0208) (0.0214) (0.0232) (0.0292) (0.158)

Priority: Currently Enrolled -1.922∗∗ -1.903∗∗ -1.870∗∗ -1.874∗∗ -1.887∗∗ 0
(0.757) (0.757) (0.758) (0.754) (0.750) (.)

Priority: Sibling Attending 0.682∗∗∗ 0.684∗∗∗ 0.690∗∗∗ 0.717∗∗∗ 0.771∗∗∗ 0.684∗∗∗

(0.0518) (0.0518) (0.0526) (0.0551) (0.0641) (0.263)

Priority: Child of School Staff 0.851∗∗∗ 0.881∗∗∗ 0.815∗∗∗ 0.834∗∗∗ 0.679∗∗∗ 1.102
(0.183) (0.188) (0.195) (0.206) (0.242) (0.780)

Priority: Child of Alumni 0.820∗∗∗ 0.826∗∗∗ 0.837∗∗∗ 0.848∗∗∗ 0.891∗∗∗ 1.018∗∗∗

(0.0418) (0.0420) (0.0429) (0.0453) (0.0521) (0.217)

Applications 61084 60464 57904 50849 34485 1359
Applicants 22673 22442 21667 19406 13855 636
Pseudo-R2 0.0258 0.0275 0.0308 0.0341 0.0433 0.0818
Min. preference length 2 2 2 2 2 2
Avg. preference length 2.694 2.694 2.672 2.620 2.489 2.137
Max. preference length 46 46 46 46 15 5

Notes: †Coefficient estimates and standard errors are multiplied by 100. Standard errors in paren-
theses, clustered at the applicant level. Additional controls are included in the model but omitted
from the table for brevity. This table reports estimates from conditional logit models where the
dependent variable is the stated preference rank of school options. All columns are restricted to
alternatives with top-tier georeferencing quality. Each column varies the radius used to define
the choice set, ranging from 100 km to 2 km. Coefficients represent the marginal utility associ-
ated with each attribute: positive values indicate higher likelihood of a school being ranked more
favorably, while negative values imply reduced preference. Asterisks indicate statistical signifi-
cance at the 10% (*), 5% (**), and 1% (***) levels.

A-2 Alternative models
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Table A-4: Main-Round Effects: Original vs. Alternative Models

Foot-time (Baseline) +Quadratic Foot-time Car-time Min(Foot-time,Car-time) Foot distance (km)

Metric Orig. Ext. ∆ (%) Ext. ∆ (%) Ext. ∆ (%) Ext. ∆ (%) Ext. ∆ (%)

Panel A: Unassignment Rate
Fraction Unassigned 8.07% 4.20% −48.03%∗∗∗ 4.09% −49.32%∗∗∗ 4.06% −49.70%∗∗∗ 4.06% −49.70%∗∗∗ 4.17% −48.32%∗∗∗

Panel B: Assignment Transitions (conditional on being assigned)
Same assignment – 73.26% – 73.31% – 73.24% – 73.12% – 73.27% –
Gained assignment – – +5.28% – +5.37% – +5.38% – +5.38% – +5.28%
Lost assignment – – +1.40% – +1.38% – +1.37% – +1.37% – +1.38%
Different program – 17.27% – 17.24% – 17.32% – 17.43% – 17.28% –

Panel C: Mean Utility
Conservative, U(Unassigned) = 0 0.1500 0.1534 +2.28%∗∗∗ 0.1534 +2.28%∗∗∗ 0.1436 +2.48%∗∗∗ 0.1437 +2.49%∗∗∗ 0.1429 +2.50%∗∗∗

Optimistic, U(Unassigned) = −Ū 0.1378 0.1471 +6.74%∗∗∗ 0.1471 +6.74%∗∗∗ 0.1378 +6.96%∗∗∗ 0.1378 +6.96%∗∗∗ 0.1369 +6.85%∗∗∗

Notes: This table presents the effects of implementing the preference-extension mechanism in the main round
under five different travel-cost specifications. Foot-time is the baseline model; the remaining columns show
results when I (i) add a quadratic term to walking time, (ii) use driving time costs, (iii) take the minimum
of walking and driving time, and (iv) use the walking distance in kilometers. Panel A reports the fraction
of students left unassigned before (“Orig.”) and after (“Ext.”) extension, along with the percent change. In
Panel B tracks assignment-transition rates (same assignment, gained, lost, or switched program) conditional
on being assigned under either scenario. Finally, Panel C reports changes in mean utility under two scenarios
for unassigned students. Asterisks indicate statistical significance at the 1% level (∗∗∗).

A-3 Heterogeneous Effects

Avg. = −48.03%
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Figure A-1: Changes in Unassignment and Utility Outcomes by Grade: Main round
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Figure A-2: Changes in Unassignment and Utility Outcomes by Measures of Exposure to
Excess Demand: Complementary round
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